			 	- 45			
		7					
Reg. No.				٠.			

Question Paper Code: 51447

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Electronics and Communication Engineering

EC 2251/EC 41/10144 EC 402/080290019 - ELECTRONIC CIRCUITS - II

(Regulations 2008/2010)

(Common to PTEC 2251 Electronic Circuits – II for B.E. (Part-Time) Third Semester ECE – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 \text{ Marks})$

- 1. Why gain bandwidth product remains constant with the introduction of negative feedback?
- 2. A voltage series feedback amplifier has a voltage gain with feedback as 83.33 and feedback ratio as 0.01. Calculate the voltage gain of amplifier with feedback.
- 3. What is the major disadvantage of a Twin-T oscillator?
- 4. In a Hartley oscillator, if $L_1 = 0.2$ mH, $L_2 = 0.3$ mH and C = 0.003 μ F. Calculate the frequency of its oscillations.
- 5. What is unloaded Q?
- 6. What are the different coil losses?
- 7. Why is neutralization required in tuned amplifiers?
- 8. Define the threshold points in a Schmitt trigger circuit.
- 9. Define slope error and displacement error.
- 10. Mention two applications of blocking oscillators.

$PART - B (5 \times 16 = 80 Marks)$

With a neat diagram, derive the expression of R_{if}, R_{of}, A_v and A_{vf} for the following.

(8 + 8)

- Voltage series feedback amplifier (i)
- (ii) Current shunt feedback amplifier.

1

OR

- Discuss Nyquist criterion for stability of feedback amplifiers, with the help (b) of Nyquist plot and bode plot. (8)
 - An amplifier has a voltage gain of 4000. Its input impedance is 2 K and (ii) output impedance is 60 K. Calculate the voltage gain, input and output impedance of the circuit is 5% of the feedback is fed in the form of series negative voltage feedback. (8)
- 12. Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of (i) the amplifier must be atleast three for the oscillation to occur. (10)
 - In a certain oscillator circuit, the gain of the amplifier is $\frac{-16 \times 10^6}{100}$ and the (ii) feedback factor of the feedback network is $\frac{10^8}{12 \times 10^8 + i\omega l^2}$. Verify the Barkhausen criterion for the sustained oscillations. Also find the frequency at which the circuit will oscillate. **(6)**

OR

- (i) Explain the working of a Colpitts oscillator with a neat circuit diagram and derive the frequency of oscillation. (8)
 - In a Colpitt's oscillator, the value of the inductor and capacitors in the tank circuit are L = 40 mH, $C_1 = 100 \text{ pF}$ and $C_2 = 500 \text{ pF}$. (8)
 - (1) Find the frequency of oscillation.
 - **(2)** If the output voltage is 10 V, find the feedback voltage at the input side of the amplifier.
 - Find the minimum gain, if the frequency is changed by (3)charging 'L' alone.
 - Find the value of C₁ for a gain of 10 if C₂ is kept constant as 500 pF. (4)Also find the resulting new frequency.

St.	Annes	Colle	ge of	Engineering and Technology / www.stannescet.ac.in / stannescet@gr	nail.com
	13.	(a)	(i)	Draw the circuit diagram of a single tuned amplifier and explain the circuit	
				operation. Also derive the expression for its frequency of oscillation.	(10)
	,		(ii)	Discuss the effect of cascading tuned amplifiers.	(6)
				OR	
	-	(b)	(i) ´	Explain the working of stagger tuned amplifiers with appropriate derivations.	(10)
			(ii)	Explain the instability of tuned amplifiers and explain any one technique	
				for stabilization.	(6)
	-				
	14.	(a)	With	a circuit diagram and waveforms explain the operation of a transistor based	,
		(,			(16)
				OR	
		(b)	(i)	Discuss on the response of a RC low-pass circuit for (1) square input and	
		V - /		(2) ramp input.	· (8)
			(ii)	Discuss on the effect of RC time constant and condition for the circuit to operate as integrator.	(8)
				operate as integration.	()
	15.	(a)		w the circuit diagram and describe the working of a transistor monostable	
				king oscillator with base timing. Derive the expression for the pulse	
		•	widt		(16)
				OR *	-
-		(b)	(i)	With a neat circuit diagram and waveforms, explain the operation of a UJT	3
				relaxation oscillator. Derive the expressions for the sweep time and frequency of oscillation of the circuit.	(8)
			(ii)	Explain the operation of a simple current time base generator circuit.	(0)
					•
					-